On weak commutativity in groups
نویسندگان
چکیده
منابع مشابه
On Commutativity and Finiteness in Groups
The second author introduced notions of weak permutablity and commutativity between groups and proved the finiteness of a group generated by two weakly permutable finite subgroups. Two groups H, K weakly commute provided there exists a bijection f : H → K which fixes the identity and such that h commutes with its image h for all h ∈ H. The present paper gives support to conjectures about the ni...
متن کاملCommutativity in non-Abelian Groups
Let P2(G) be defined as the probability that any two elements selected at random from the group G, commute with one another. If G is an Abelian group, P2(G) = 1, so our interest lies in the properties of the commutativity of nonAbelian groups. Particular results include that the maximum commutativity of a non-Abelian group is 5/8, and this degree of commutativity only occurs when the order of t...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملOn Commutativity of Quasi-minimal Groups
We investigate if every quasi-minimal group is abelian, and give a positive answer for a quasi-minimal pure group having a ∅-definable partial order with uncountable chains. We also relate two properties of a complete theory in a countable language: the existence of a quasi-minimal model and the existence of a strongly regular type. As a consequence we derive the equivalence of conjectures on c...
متن کاملrestrictions on commutativity ratios in finite groups
we consider two commutativity ratios $pr(g)$ and $f(g)$ in a finite group $g$ and examine the properties of $g$ when these ratios are `large'. we show that if $pr(g) > frac{7}{24}$, then $g$ is metabelian and we give threshold results in the cases where $g$ is insoluble and $g'$ is nilpotent. we also show that if $f(g) > frac{1}{2}$, then $f(g) = frac{n+1}{2n}$, for some na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.08.020